Corrigé médian - SQ20

Exercice 3 (10 points)

- 1. (a) Calculer pour tout réel A strictement supérieur à 1, l'intégrale $I_A=\int_1^A \frac{\lambda}{t^{\lambda+1}}\,\mathrm{d}t$
 - (b) Calculer $\lim_{A\to +\infty} I_A$.
 - (c) En déduire que g peut être considérée comme une densité de probabilité.
- 2. On considère dans toute la suite, une variable aléatoire Y admettant g comme densité et on note G sa fonction de répartition. Déterminer pour tout réel x, $G\left(x\right)$.
- 3. On suppose dans cette question que $\lambda > 1$.
 - (a) Soit A un réel strictement supérieur à 1.

$$J_A = \int_1^A \frac{\lambda}{t^{\lambda}} dt = \lambda \int_1^A t^{-\lambda} dt = \lambda \left[\frac{t^{-\lambda+1}}{-\lambda+1} \right]_{t=1}^{t=A} = \frac{-\lambda}{\lambda-1} \left[\frac{1}{t^{\lambda-1}} \right]_{t=1}^{t=A}$$

D'où $J_A = \frac{\lambda}{\lambda-1} \left(1 - \frac{1}{A^{\lambda-1}} \right)$

(b) En déduire que Y admet une espérance et donner sa valeur en fonction de λ .

- (c) Calculer pour tout réel A strictement supérieur à 1, l'intégrale $K_A=\int_1^A \frac{\lambda}{t^{\lambda-1}}\,\mathrm{d}t.$ La variable Y admet-elle une variance ?
- 4. On considère la variable aléatoire X définie par $X = \ln(Y)$ et on note F sa fonction de répartition.
 - (a) Établir pour tout réel x, l'égalité suivante : $F(x) = G(e^x)$.
 - (b) Donner en distinguant les cas x positif et x négatif, l'expression de $F\left(x\right)$. Reconnaître la loi suivie par la variable aléatoire X.
 - (c) Donner sans calcul, la valeur de l'espérance mathématique de X.
- 5. On suppose dans cette dernière question uniquement que $\lambda = 2$. On considère à présent, deux variables aléatoires Z_1 et Z_2 indépendantes et suivant la même loi que Y (on a pris ici $\lambda = 2$). On pose $T = \inf(Z_1, Z_2)$
 - (a) Déterminer la fonction de répartition H de T en remarquant que pour tout réel $x \ge 1$,

$$\mathbb{P}\left[T > x\right] = \mathbb{P}\left(\left[Z_1 > x\right] \cap \left[Z_2 > x\right]\right)$$

- (b) En déduire une densité h de T.
- (c) En déduire que T admet une espérance et préciser sa valeur.