SQ20 - CH2 Page 1/11

Variables aléatoires discrètes

I Généralités sur les variables aléatoires discrètes

I.1 Notion de variable aléatoire

Définition 1

Soit (Ω, \mathcal{T}) un espace probabilisable.

• On appelle variable aléatoire réelle (en abrégé var) toute application $X: \Omega \longrightarrow \mathbb{R}$ définie sur ... à valeurs dans ... telle que pour tout intervalle J de \mathbb{R} , on ait :

$$X^{-1}(J)$$

- L'ensemble des valeurs prises par X est une partie de \mathbb{R} , que l'on appelle univers image de Ω par X et que l'on note $X(\Omega)$.
- Une var $X: \Omega \longrightarrow \mathbb{R}$ est dite discrète lorsque $X(\Omega) = \{x_i \in \mathbb{R} \mid i \in I\}$ où $I \dots$
- L'événement de \mathcal{T} noté $[X = x_i]$ est l'ensemble des éléments de Ω qui ont pour image x_i par l'application X.

L'ensemble noté $[X=x_i]$ est l'événement : « X prend la valeur x_i ». Plus précisément, $[X=x_i]=\{\omega\in\Omega\mid X(\omega)=\ldots\}$

Si $X(\Omega)$ est un ensemble fini, on dit que X est une var discrète finie. Sinon on dit que X est une var discrète infinie.

Exemples:

- (i) Une urne contient 3 boules rouges et 2 boules vertes. On tire au hasard et simultanément deux boules de l'urne. On désigne par X la variable aléatoire qui compte le nombres de boules vertes obtenues.
- (ii) On effectue une succession de lancers d'un dé cubique jusqu'à obtenir 6. Soit X le nombre de lancers effectués.

Il est difficile ici de décrire l'univers de notre expérience mais on peut tout de même donner très clairement $X(\Omega)$.

En étant rigoureux on devrait écrire : $X(\Omega) = \mathbb{N}^* \cup \{+\infty\}$ car il se peut que le 6 ne soit jamais obtenu. Mais on peut démontrer que la probabilité de ne jamais obtenir 6 est nulle, c'est-à-dire que l'on obtiendra presque sûrement 6. On peut alors choisir de considérer que $X(\Omega) = \mathbb{N}^*$ et donc X est une var discrète infinie.

SQ20 - CH2 Page 2/11

I.2 Loi de probabilité d'une variable aléatoire discrète

Dans la suite du chapitre, (Ω, \mathcal{T}, P) est un espace probabilisé.

Définition 2

Soit $X: \Omega \longrightarrow \mathbb{R}$ une var discrète avec $X(\Omega) = \{x_i \mid i \in I\}$.

On appelle **loi de probabilité** de X la liste des couples $(x_i, p_i)_{i \in I}$ où pour tout $i \in I$,

Lorsque $X(\Omega)$ est fini et ne contient «pas trop» d'éléments, on peut présenter la loi de X sous la forme d'un tableau avec dans la première ligne les valeurs de x_i et dans la deuxième ligne $p_i = P([X = x_i])$.

Exemple : reprenons l'exemple (i) de I.1

REMARQUE : l'univers Ω étant un ensemble souvent compliqué ou mal connu, une variable aléatoire $X:\Omega\longrightarrow\mathbb{R}$ permet de «transférer» P sur un univers plus simple et plus petit qui est $X(\Omega)$.

Proposition 1

Soit X une var discrète. Si $X(\Omega)=\{x_i\in\mathbb{R}\mid i\in I\}$ alors la famille d'événements $([X=x_i])_{i\in I}$ est un système complet d'événements. En particulier on a :

$$\sum_{i \in I} P([X = x_i]) =$$

On admet que si $(x_n, p_n)_{n \in \mathbb{N}}$ une suite de \mathbb{R}^2 telle que $\forall n \in \mathbb{N}, p_n \geqslant 0$ et $\sum_{n=0}^{+\infty} p_n =$ alors il existe un espace probabilisé (Ω, \mathcal{T}, P) et une var discrète X définie sur Ω tels que $(x_n, p_n)_{n \in \mathbb{N}}$

I.3 Fonction de répartition

Définition 3

Soit $X: \Omega \longrightarrow \mathbb{R}$ une variable aléatoire réelle.

On appelle fonction de répartition de X la fonction $F: \mathbb{R} \to \mathbb{R}$ définie par :

$$\forall x \in \mathbb{R}, \quad F(x) =$$

Proposition 2

Soit F la fonction de répartition d'une var X. Alors

- (i) $\forall x \in \mathbb{R}, F(x) \in$
- (ii) F est

sur \mathbb{R} .

- (iii) $\lim_{x \to -\infty} F(x) =$ et $\lim_{x \to +\infty} F(x) =$
- (iv) $\forall (a, b) \in \mathbb{R}^2$, $a < b \Longrightarrow P(a < X \leqslant b) =$

Preuve: (i) provient de la définition d'une probabilité.

- (ii) Soit $x \leq y$. Alors on a $[X \leq x] \subset [X \leq y]$ et donc $P(X \leq x) \leq P(X \leq y)$, c'est-à-dire $F(x) \leq F(y)$.
- (iii) admis
- (iv) Soit a et b deux réels tels que a < b. Alors $[a < X \le b] = [X \le b] \setminus [X \le a]$. Donc grâce aux propriétés des probabilités, $P([a < X \le b]) = F(b) F(a)$.

Exemple : reprenons l'exemple (i) de I.1

Proposition 3

La fonction de répartition d'une var discrète est une fonction en escalier.

I.4 Image d'une variable aléatoire par une fonction

Proposition 4

Soit $X:\Omega\longrightarrow\mathbb{R}$ une var discrète.

Soit $f:\mathcal{D}\longrightarrow\mathbb{R}$ une fonction définie sur \mathcal{D} à valeurs dans \mathbb{R} telle que

Alors l'application $Y=f\circ X$ notée aussi f(X) est une var discrète définie sur Ω et telle que :

$$Y(\Omega) =$$
 avec $\forall y \in Y(\Omega), \ P(Y = y) = \sum$

Exemple : soit X une var dont la loi est définie par :

valeurs x_i de X	-1	1	2
probabilités $p_i = P([X = x_i])$	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$

Déterminer la loi de Y = 2X + 1.

II Espérance, variance et écart type

II.1 Cas des variables aléatoires discrètes finies

Définition 4

Soit X une variable aléatoire définie sur Ω , de loi de probabilité $(x_i, p_i)_{i \in [\![1, n]\!]}$

ullet L'espérance mathématique de X est le réel noté E(X) défini par :

$$E(X) = \sum_{i=1}^{n}$$

ullet La variance de X est le réel positif noté V(X) défini par

$$V(X) = \sum_{i=1}^{n} p_i \left(\right)^2$$

• L'écart-type de X est le réel positif noté $\sigma(X)$ défini par : $\sigma(X) = \sigma(X)$

REMARQUES:

- (i) E(X) est la moyenne pondérée des valeurs prises par X, chaque valeur valeur x_i ayant pour coefficient le nombre p_i .
- (ii) Si Ω est un univers fini, $E(X) = \sum$

${\bf Exemple} \ :$

SQ20 - CH2 Page 5/11

Proposition 5 (formule de transfert)

Soit X une variable aléatoire définie sur Ω , prenant les valeurs x_1, x_2, \ldots, x_n avec les probabilités p_1, p_2, \ldots, p_n .

Soit f une fonction définie sur la partie $X(\Omega)$ de \mathbb{R} .

Alors l'espérance de la variable aléatoire $Y = f \circ X$ est

$$E(Y) =$$

Proposition 6

Soit X une variable aléatoire discrète finie définies sur Ω . Alors pour tous réels a et b,

$$E(aX + b) =$$

$$V(X) = E((X - E(X))^{2})$$

$$V(aX + b) =$$

II.2 Cas des variables aléatoires discrètes infinies

Dans ce paragraphe, X est une var discrète infinie avec $X(\Omega) = \{x_i \in \mathbb{R} \mid i \in \mathbb{N}\}.$

II.2.1 Espérance mathématique

Définition 5

Soit X une variable aléatoire discrète, de loi de probabilité $(x_i, p_i)_{i \in \mathbb{N}}$

On dit que X admet une espérance, ou que l'espérance de X existe lorsque la série $\sum p_i x_i$ est absolument convergente.

On appelle alors espérance mathématique de X, le réel noté E(X) défini par :

$$E(X) =$$

SQ20 - CH2 Page 6/11

Proposition 7 (formule de transfert)

Soit $f: X(\Omega) \longrightarrow \mathbb{R}$ une fonction définie sur la partie $X(\Omega)$ de \mathbb{R} .

Si la série $\sum p_i f(x_i)$ converge absolument, alors la variable aléatoire $Y = f \circ X = f(X)$ admet une espérance et on a :

$$E(f(X)) =$$

Proposition 8 (admise, linéarité de l'espérance)

Soit X et Y deux variables aléatoires discrètes admettant chacune une espérance. Soit a et b deux nombres réels. Alors la variable aléatoire aX + bY admet une espérance et

$$E(aX + bY) =$$

II.2.2 Moment d'ordre 2

Définition 6

Si la variable aléatoire X^2 admet une espérance, on dit que X admet un **moment** d'ordre 2 qui est le réel

$$E(X^2) =$$

Remarque:

si X admet un moment d'ordre 2, alors l'espérance de X existe. En effet,

II.2.3 Variance et écart-type

Définition 7

Soit X une var discrète admettant un moment d'ordre 2.

ullet On appelle variance de X le réel positif noté V(X) défini par :

$$V(X) =$$

 \bullet On appelle écart-type de X le réel positif noté $\sigma(X)$ défini par

SQ20 - CH2 Page 7/11

REMARQUES:

- Si X n'admet pas d'espérance, X ne peut pas admettre de variance.
- La variance est la moyenne du carré de la distance entre les valeurs de X et l'espérance de X. La variance est donc une mesure de dispersion de X par rapport à E(X).

Proposition 9 (formule de Kænig-Huygens)

Soit X une var discrète admettant un moment d'ordre 2. Alors

$$V(X) =$$

En pratique, on utilise souvent cette formule pour calculer une variance.

Si X admet une variance, alors pour tous réels a et b, aX + b admet une variance et

$$V(aX + b) =$$

III Lois discrètes usuelles finies

III.1 Loi de Bernoulli

On appelle <u>épreuve de Bernoulli</u> une expérience aléatoire ayant deux issues possibles et deux seulement. On a coutume d'appeler succès S l'une de ces deux issues, et <u>échec</u> E l'autre issue. Par exemple, on lance une fois une pièce de monnaie. On peut appeler succès l'obtention de pile, et <u>échec</u> l'obtention de face.

On définit alors la variable aléatoire X en posant X = 1 si le succès S est réalisé et X = 0 sinon. X est une var qui prend les valeurs 0 et 1 avec la probabilité P(X = 0) = 1 - p et P(X = 1) = p.

Définition 8

Soit $p \in [0; 1]$. On dit qu'une var X suit la loi de Bernoulli de paramètre p ssi

$$X(\Omega) =$$
 avec $P(X = 1) =$ et $P(X = 0) =$

On écrit $X \hookrightarrow \mathcal{B}(1,p)$

Proposition 10

Si
$$X \hookrightarrow \mathcal{B}(1,p)$$
 alors $E(X) =$ et $V(X) =$

SQ20 - CH2 Page 8/11

III.2 Loi binomiale (ou loi des tirages avec remise)

n désigne un entier naturel non nul (en général $n \ge 2$). On répète n fois dans des conditions identiques et indépendantes la même épreuve de Bernoulli à deux issues contraires S et E. On désigne par p la probabilité du succès S, $0 \le p \le 1$. On peut considérer que tout résultat de ce type d'expérience est une liste ordonnée de n lettres, formée uniquement des lettre S (pour succès) et E (pour échec).

Théorème 11

Si X est la variable aléatoire égale au nombre de succès obtenus au cours de ces n épreuves indépendantes, alors

$$X(\Omega) = [0, n]$$
 et $\forall k \in [0, n], P(X = k) =$

RAPPEL : d'après la formule du binôme de Newton, pour tous réels a et b,

Définition 9

On dit alors que X suit la loi binomiale de paramètres n et p. On écrit $X \hookrightarrow \mathcal{B}(n,p)$

Exemple : on lance un dé équilibré cinq fois de suite. Pour un lancer donné, le succès S correspond à la sortie du 6 et l'échec E à la sortie de 1, 2, 3, 4 ou 5. Calculer la probabilité d'obtenir exactement deux fois le 6 au cours des cinq lancers.

Proposition 12

Soit $n \in \mathbb{N}^*$ et $p \in \mathbb{R}$ tel que $0 \leqslant p \leqslant 1$. Si $X \hookrightarrow \mathscr{B}(n,p)$ alors

$$E(X) =$$
 et $V(X) =$

SQ20 - CH2 Page 9/11

III.3 Loi hypergéométrique (ou loi des tirages sans remise)

Mise en place : on considère une urne dans laquelle sont placées N boules : il y a M=pN boules blanches et N-M=(1-p)N boules rouges. On tire simultanément et sans remise n boules de cette urne $(1 \le n \le N)$ et on appelle X la variable aléatoire égale au nombre de boules blanches obtenues.

X prend la valeur k si $0 \le k \le M$ et $0 \le n - k \le N - M$, c'est-à-dire si

$$\leq k \leq$$

On considère l'ensemble Ω des combinaisons de n éléments de l'ensemble des N boules, et on munit $(\Omega, \mathcal{P}(\Omega))$ de la probabilité uniforme P. $\operatorname{card}(\Omega) =$

• On a donc:

$$P(X = k) = \frac{\binom{M}{k} \binom{N - M}{n - k}}{\binom{N}{n}}$$

Définition 10

Soit N et n deux entiers tels que $1 \le n \le N$. Soit $p \in [0, 1]$ tel que $Np \in \mathbb{N}^*$ On dit qu'une variable aléatoire X suit la loi hypergéométrique de paramètres N, n et p ssi

$$X(\Omega) =$$
 et $\forall k \in X(\Omega), \quad P(X = k) =$

On écrit $X \hookrightarrow \mathcal{H}(N, n, p)$

Proposition 13 (admise)

Si
$$X \hookrightarrow \mathcal{H}(N, n, p)$$
, alors $E(X) =$

SQ20 - CH2 Page 10/11

IV Lois discrètes usuelles infinies

IV.1 Loi géométrique

RAPPEL : soit x un nombre réel tel que -1 < x < 1.

• La série $\sum x^k$ est absolument convergente, on l'appelle la **série géométrique de raison** x et on a :

$$\sum_{k=0}^{+\infty} x^k =$$

• La série $\sum k x^{k-1}$ est absolument convergente, on l'appelle la série dérivée de la série géométrique de raison x et on a :

$$\sum_{k=1}^{+\infty} k \, x^{k-1} =$$

On répète dans des conditions identiques et indépendantes la même épreuve de Bernoulli à deux issues contraires S et E. On désigne par p la probabilité du succès S, 0 .

On appelle X la variable aléatoire égale au nombre d'épreuves effectuées jusqu'à ce que S soit réalisé **pour la première fois**.

On note S_i l'événement : «S est réalisé au cours de la i-ème épreuve» et on pose $E_i = \overline{S_i}$. Pour tout $k \in \mathbb{N}^*$,

$$[X = k] = E_1 \cap E_2 \cap ... \cap E_{k-1} \cap S_k$$

d'où

$$P(X = k) =$$

Définition 11

Soit $p \in]0$, 1[. On dit qu'une variable aléatoire X suit la loi géométrique de paramètre p ssi

$$X(\Omega) =$$
 et $\forall k \in \mathbb{N}^*, P(X = k) =$

On écrit $X \hookrightarrow \mathcal{G}(p)$

Proposition 14

Soit $p \in]0, 1[$. Si $X \hookrightarrow \mathscr{G}(p)$ alors

$$E(X) =$$
 et $V(X) =$

SQ20 - CH2 Page 11/11

Preuve: on sait que pour tout réel $x \in]-1,1[$, la série $\sum k \, x^{k-1}$ converge absolument et

IV.2 Loi de Poisson

RAPPEL : pour tout nombre réel x, la série $\sum \frac{x^k}{k!}$ est absolument convergente. On l'appelle série exponentielle et on a

$$\sum_{k=0}^{+\infty} \frac{x^k}{k!} = \lim_{n \to +\infty} \dots$$

Définition 12

Soit λ un réel strictement positif.

On dit qu'une variable aléatoire X suit la loi de Poisson de paramètre λ ssi

$$X(\Omega) = \mathbb{N}$$
 et $\forall k \in \mathbb{N}, P(X = k) =$

On écrit $X \hookrightarrow \mathscr{P}(\lambda)$

CHAMPS D'INTERVENTION:

● Soit $n \in \mathbb{N}^*$ et p un réel tel que $0 \le p \le 1$. Lorsque n est grand $(n \ge 50)$, p est petit $(p \le 0, 1)$ et n p < 10, on peut approcher la loi binomiale $\mathcal{B}(n, p)$ par la loi de Poisson $\mathcal{P}(\lambda)$ où

$$\lambda = \dots$$

Proposition 15

Soit $\lambda > 0$. Si $X \hookrightarrow \mathscr{P}(\lambda)$ alors

$$E(X) =$$
 et $V(X) =$